
Flask-Login Documentation
Release 0.3.2

Matthew Frazier

Mar 17, 2017

Contents

1 Configuring your Application 3

2 How it Works 5

3 Your User Class 7

4 Login Example 9

5 Customizing the Login Process 11

6 Login using Authorization header 13

7 Custom Login using Request Loader 15

8 Anonymous Users 17

9 Remember Me 19
9.1 Alternative Tokens . 19
9.2 Fresh Logins . 20
9.3 Cookie Settings . 20

10 Session Protection 21

11 Localization 23

12 API Documentation 25
12.1 Configuring Login . 25
12.2 Login Mechanisms . 27
12.3 Protecting Views . 27
12.4 User Object Helpers . 28
12.5 Utilities . 28
12.6 Signals . 29

i

ii

Flask-Login Documentation, Release 0.3.2

Flask-Login provides user session management for Flask. It handles the common tasks of logging in, logging out, and
remembering your users’ sessions over extended periods of time.

It will:

• Store the active user’s ID in the session, and let you log them in and out easily.

• Let you restrict views to logged-in (or logged-out) users.

• Handle the normally-tricky “remember me” functionality.

• Help protect your users’ sessions from being stolen by cookie thieves.

• Possibly integrate with Flask-Principal or other authorization extensions later on.

However, it does not:

• Impose a particular database or other storage method on you. You are entirely in charge of how the user is
loaded.

• Restrict you to using usernames and passwords, OpenIDs, or any other method of authenticating.

• Handle permissions beyond “logged in or not.”

• Handle user registration or account recovery.

• Configuring your Application

• How it Works

• Your User Class

• Login Example

• Customizing the Login Process

• Login using Authorization header

• Custom Login using Request Loader

• Anonymous Users

• Remember Me

– Alternative Tokens

– Fresh Logins

– Cookie Settings

• Session Protection

• Localization

• API Documentation

– Configuring Login

– Login Mechanisms

– Protecting Views

– User Object Helpers

– Utilities

– Signals

Contents 1

Flask-Login Documentation, Release 0.3.2

2 Contents

CHAPTER 1

Configuring your Application

The most important part of an application that uses Flask-Login is the LoginManager class. You should create one
for your application somewhere in your code, like this:

login_manager = LoginManager()

The login manager contains the code that lets your application and Flask-Login work together, such as how to load a
user from an ID, where to send users when they need to log in, and the like.

Once the actual application object has been created, you can configure it for login with:

login_manager.init_app(app)

3

Flask-Login Documentation, Release 0.3.2

4 Chapter 1. Configuring your Application

CHAPTER 2

How it Works

You will need to provide a user_loader callback. This callback is used to reload the user object from the user ID
stored in the session. It should take the unicode ID of a user, and return the corresponding user object. For example:

@login_manager.user_loader
def load_user(user_id):

return User.get(user_id)

It should return None (not raise an exception) if the ID is not valid. (In that case, the ID will manually be removed
from the session and processing will continue.)

5

https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/2/library/constants.html#None

Flask-Login Documentation, Release 0.3.2

6 Chapter 2. How it Works

CHAPTER 3

Your User Class

The class that you use to represent users needs to implement these properties and methods:

is_authenticated Returns True if the user is authenticated, i.e. they have provided valid credentials. (Only
authenticated users will fulfill the criteria of login_required.)

is_active Returns True if this is an active user - in addition to being authenticated, they also have activated their
account, not been suspended, or any condition your application has for rejecting an account. Inactive accounts
may not log in (without being forced of course).

is_anonymous Returns True if this is an anonymous user. (Actual users should return False instead.)

get_id() Returns a unicode that uniquely identifies this user, and can be used to load the user from the
user_loader callback. Note that this must be a unicode - if the ID is natively an int or some other
type, you will need to convert it to unicode.

To make implementing a user class easier, you can inherit from UserMixin, which provides default implementations
for all of these methods. (It’s not required, though.)

7

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/2/library/functions.html#unicode
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#unicode

Flask-Login Documentation, Release 0.3.2

8 Chapter 3. Your User Class

CHAPTER 4

Login Example

Once a user has authenticated, you log them in with the login_user function. For example:

@app.route('/login', methods=['GET', 'POST'])
def login():

Here we use a class of some kind to represent and validate our
client-side form data. For example, WTForms is a library that will
handle this for us, and we use a custom LoginForm to validate.
form = LoginForm()
if form.validate_on_submit():

Login and validate the user.
user should be an instance of your `User` class
login_user(user)

flask.flash('Logged in successfully.')

next = flask.request.args.get('next')
next_is_valid should check if the user has valid
permission to access the `next` url
if not next_is_valid(next):

return flask.abort(400)

return flask.redirect(next or flask.url_for('index'))
return flask.render_template('login.html', form=form)

Warning: You MUST validate the value of the next parameter. If you do not, your application will be vulnerable to
open redirects.

It’s that simple. You can then access the logged-in user with the current_user proxy, which is available in every
template:

{% if current_user.is_authenticated %}
Hi {{ current_user.name }}!

{% endif %}

Views that require your users to be logged in can be decorated with the login_required decorator:

9

https://docs.python.org/2/library/functions.html#next

Flask-Login Documentation, Release 0.3.2

@app.route("/settings")
@login_required
def settings():

pass

When the user is ready to log out:

@app.route("/logout")
@login_required
def logout():

logout_user()
return redirect(somewhere)

They will be logged out, and any cookies for their session will be cleaned up.

10 Chapter 4. Login Example

CHAPTER 5

Customizing the Login Process

By default, when a user attempts to access a login_required view without being logged in, Flask-Login will
flash a message and redirect them to the log in view. (If the login view is not set, it will abort with a 401 error.)

The name of the log in view can be set as LoginManager.login_view . For example:

login_manager.login_view = "users.login"

The default message flashed is Please log in to access this page. To customize the message, set
LoginManager.login_message:

login_manager.login_message = u"Bonvolu ensaluti por uzi tiun paĝon."

To customize the message category, set LoginManager.login_message_category:

login_manager.login_message_category = "info"

When the log in view is redirected to, it will have a next variable in the query string, which is the page that the user
was trying to access.

If you would like to customize the process further, decorate a function with LoginManager.
unauthorized_handler:

@login_manager.unauthorized_handler
def unauthorized():

do stuff
return a_response

11

Flask-Login Documentation, Release 0.3.2

12 Chapter 5. Customizing the Login Process

CHAPTER 6

Login using Authorization header

Caution: This method will be deprecated; use the request_loader below instead.

Sometimes you want to support Basic Auth login using the Authorization header, such as for api requests. To
support login via header you will need to provide a header_loader callback. This callback should behave the
same as your user_loader callback, except that it accepts a header value instead of a user id. For example:

@login_manager.header_loader
def load_user_from_header(header_val):

header_val = header_val.replace('Basic ', '', 1)
try:

header_val = base64.b64decode(header_val)
except TypeError:

pass
return User.query.filter_by(api_key=header_val).first()

By default the Authorization header’s value is passed to your header_loader callback. You can change the
header used with the AUTH_HEADER_NAME configuration.

13

Flask-Login Documentation, Release 0.3.2

14 Chapter 6. Login using Authorization header

CHAPTER 7

Custom Login using Request Loader

Sometimes you want to login users without using cookies, such as using header values or an api key passed as a query
argument. In these cases, you should use the request_loader callback. This callback should behave the same as
your user_loader callback, except that it accepts the Flask request instead of a user_id.

For example, to support login from both a url argument and from Basic Auth using the Authorization header:

@login_manager.request_loader
def load_user_from_request(request):

first, try to login using the api_key url arg
api_key = request.args.get('api_key')
if api_key:

user = User.query.filter_by(api_key=api_key).first()
if user:

return user

next, try to login using Basic Auth
api_key = request.headers.get('Authorization')
if api_key:

api_key = api_key.replace('Basic ', '', 1)
try:

api_key = base64.b64decode(api_key)
except TypeError:

pass
user = User.query.filter_by(api_key=api_key).first()
if user:

return user

finally, return None if both methods did not login the user
return None

15

Flask-Login Documentation, Release 0.3.2

16 Chapter 7. Custom Login using Request Loader

CHAPTER 8

Anonymous Users

By default, when a user is not actually logged in, current_user is set to an AnonymousUserMixin object. It
has the following properties and methods:

• is_active and is_authenticated are False

• is_anonymous is True

• get_id() returns None

If you have custom requirements for anonymous users (for example, they need to have a permissions field), you can
provide a callable (either a class or factory function) that creates anonymous users to the LoginManager with:

login_manager.anonymous_user = MyAnonymousUser

17

https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#None

Flask-Login Documentation, Release 0.3.2

18 Chapter 8. Anonymous Users

CHAPTER 9

Remember Me

“Remember Me” functionality can be tricky to implement. However, Flask-Login makes it nearly transparent - just
pass remember=True to the login_user call. A cookie will be saved on the user’s computer, and then Flask-
Login will automatically restore the user ID from that cookie if it is not in the session. The cookie is tamper-proof, so
if the user tampers with it (i.e. inserts someone else’s user ID in place of their own), the cookie will merely be rejected,
as if it was not there.

That level of functionality is handled automatically. However, you can (and should, if your application handles any
kind of sensitive data) provide additional infrastructure to increase the security of your remember cookies.

Alternative Tokens

Using the user ID as the value of the remember token is not necessarily secure. More secure is a hash of the username
and password combined, or something similar. To add an alternative token, add a method to your user objects:

get_auth_token() Returns an authentication token (as unicode) for the user. The auth token should uniquely
identify the user, and preferably not be guessable by public information about the user such as their UID and
name - nor should it expose such information.

Correspondingly, you should set a token_loader function on the LoginManager, which takes a token (as stored
in the cookie) and returns the appropriate User object.

The make_secure_token function is provided for creating auth tokens conveniently. It will concatenate all of its
arguments, then HMAC it with the app’s secret key to ensure maximum cryptographic security. (If you store the user’s
token in the database permanently, then you may wish to add random data to the token to further impede guessing.)

If your application uses passwords to authenticate users, including the password (or the salted password hash you
should be using) in the auth token will ensure that if a user changes their password, their old authentication tokens will
cease to be valid.

19

https://docs.python.org/2/library/functions.html#unicode

Flask-Login Documentation, Release 0.3.2

Fresh Logins

When a user logs in, their session is marked as “fresh,” which indicates that they actually authenticated on that session.
When their session is destroyed and they are logged back in with a “remember me” cookie, it is marked as “non-fresh.”
login_required does not differentiate between freshness, which is fine for most pages. However, sensitive actions
like changing one’s personal information should require a fresh login. (Actions like changing one’s password should
always require a password re-entry regardless.)

fresh_login_required, in addition to verifying that the user is logged in, will also ensure that their login is
fresh. If not, it will send them to a page where they can re-enter their credentials. You can customize its behav-
ior in the same ways as you can customize login_required, by setting LoginManager.refresh_view ,
needs_refresh_message, and needs_refresh_message_category:

login_manager.refresh_view = "accounts.reauthenticate"
login_manager.needs_refresh_message = (

u"To protect your account, please reauthenticate to access this page."
)
login_manager.needs_refresh_message_category = "info"

Or by providing your own callback to handle refreshing:

@login_manager.needs_refresh_handler
def refresh():

do stuff
return a_response

To mark a session as fresh again, call the confirm_login function.

Cookie Settings

The details of the cookie can be customized in the application settings.

REMEMBER_COOKIE_NAMEThe name of the cookie to store the “remember me” information in. Default:
remember_token

REMEMBER_COOKIE_DURATIONThe amount of time before the cookie expires, as a datetime.timedelta object.
Default: 365 days (1 non-leap Gregorian year)

REMEMBER_COOKIE_DOMAINIf the “Remember Me” cookie should cross domains, set the domain value here (i.e.
.example.com would allow the cookie to be used on all subdomains of
example.com). Default: None

REMEMBER_COOKIE_PATHLimits the “Remember Me” cookie to a certain path. Default: /

20 Chapter 9. Remember Me

https://docs.python.org/2/library/datetime.html#datetime.timedelta
https://docs.python.org/2/library/constants.html#None

CHAPTER 10

Session Protection

While the features above help secure your “Remember Me” token from cookie thieves, the session cookie is still
vulnerable. Flask-Login includes session protection to help prevent your users’ sessions from being stolen.

You can configure session protection on the LoginManager, and in the app’s configuration. If it is enabled, it can
operate in either basic or strong mode. To set it on the LoginManager, set the session_protection
attribute to "basic" or "strong":

login_manager.session_protection = "strong"

Or, to disable it:

login_manager.session_protection = None

By default, it is activated in "basic" mode. It can be disabled in the app’s configuration by setting the
SESSION_PROTECTION setting to None, "basic", or "strong".

When session protection is active, each request, it generates an identifier for the user’s computer (basically, the MD5
hash of the IP address and user agent). If the session does not have an associated identifier, the one generated will be
stored. If it has an identifier, and it matches the one generated, then the request is OK.

If the identifiers do not match in basic mode, or when the session is permanent, then the session will simply be
marked as non-fresh, and anything requiring a fresh login will force the user to re-authenticate. (Of course, you must
be already using fresh logins where appropriate for this to have an effect.)

If the identifiers do not match in strong mode for a non-permanent session, then the entire session (as well as the
remember token if it exists) is deleted.

21

https://docs.python.org/2/library/constants.html#None

Flask-Login Documentation, Release 0.3.2

22 Chapter 10. Session Protection

CHAPTER 11

Localization

By default, the LoginManager uses flash to display messages when a user is required to log in. These messages
are in English. If you require localization, set the localize_callback attribute of LoginManager to a function
to be called with these messages before they’re sent to flash, e.g. gettext. This function will be called with the
message and its return value will be sent to flash instead.

23

Flask-Login Documentation, Release 0.3.2

24 Chapter 11. Localization

CHAPTER 12

API Documentation

This documentation is automatically generated from Flask-Login’s source code.

Configuring Login

class flask.ext.login.LoginManager(app=None, add_context_processor=True)
This object is used to hold the settings used for logging in. Instances of LoginManager are not bound to
specific apps, so you can create one in the main body of your code and then bind it to your app in a factory
function.

setup_app(app, add_context_processor=True)
This method has been deprecated. Please use LoginManager.init_app() instead.

unauthorized()
This is called when the user is required to log in. If you register a callback with LoginManager.
unauthorized_handler(), then it will be called. Otherwise, it will take the following actions:

•Flash LoginManager.login_message to the user.

•If the app is using blueprints find the login view for the current blueprint using
blueprint_login_views. If the app is not using blueprints or the login view for the current
blueprint is not specified use the value of login_view . Redirect the user to the login view. (The
page they were attempting to access will be passed in the next query string variable, so you can
redirect there if present instead of the homepage.)

If LoginManager.login_view is not defined, then it will simply raise a HTTP 401 (Unauthorized)
error instead.

This should be returned from a view or before/after_request function, otherwise the redirect will have no
effect.

needs_refresh()
This is called when the user is logged in, but they need to be reauthenticated because their session is stale.
If you register a callback with needs_refresh_handler, then it will be called. Otherwise, it will
take the following actions:

25

Flask-Login Documentation, Release 0.3.2

•Flash LoginManager.needs_refresh_message to the user.

•Redirect the user to LoginManager.refresh_view . (The page they were attempting to access
will be passed in the next query string variable, so you can redirect there if present instead of the
homepage.)

If LoginManager.refresh_view is not defined, then it will simply raise a HTTP 401 (Unautho-
rized) error instead.

This should be returned from a view or before/after_request function, otherwise the redirect will have no
effect.

General Configuration

user_loader(callback)
This sets the callback for reloading a user from the session. The function you set should take a user ID (a
unicode) and return a user object, or None if the user does not exist.

Parameters callback (callable) – The callback for retrieving a user object.

header_loader(callback)
This sets the callback for loading a user from a header value. The function you set should take an authen-
tication token and return a user object, or None if the user does not exist.

Parameters callback (callable) – The callback for retrieving a user object.

token_loader(callback)
This sets the callback for loading a user from an authentication token. The function you set should take an
authentication token (a unicode, as returned by a user’s get_auth_token method) and return a user
object, or None if the user does not exist.

Parameters callback (callable) – The callback for retrieving a user object.

anonymous_user
A class or factory function that produces an anonymous user, which is used when no one is logged in.

unauthorized Configuration

login_view
The name of the view to redirect to when the user needs to log in. (This can be an absolute URL as well,
if your authentication machinery is external to your application.)

login_message
The message to flash when a user is redirected to the login page.

unauthorized_handler(callback)
This will set the callback for the unauthorized method, which among other things is used by
login_required. It takes no arguments, and should return a response to be sent to the user instead of
their normal view.

Parameters callback (callable) – The callback for unauthorized users.

needs_refresh Configuration

refresh_view
The name of the view to redirect to when the user needs to reauthenticate.

26 Chapter 12. API Documentation

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#callable

Flask-Login Documentation, Release 0.3.2

needs_refresh_message
The message to flash when a user is redirected to the reauthentication page.

needs_refresh_handler(callback)
This will set the callback for the needs_refresh method, which among other things is used by
fresh_login_required. It takes no arguments, and should return a response to be sent to the user
instead of their normal view.

Parameters callback (callable) – The callback for unauthorized users.

Login Mechanisms

flask.ext.login.current_user
A proxy for the current user.

flask.ext.login.login_fresh()
This returns True if the current login is fresh.

flask.ext.login.login_user(user, remember=False, force=False, fresh=True)
Logs a user in. You should pass the actual user object to this. If the user’s is_active property is False,
they will not be logged in unless force is True.

This will return True if the log in attempt succeeds, and False if it fails (i.e. because the user is inactive).

Parameters

• user (object) – The user object to log in.

• remember (bool) – Whether to remember the user after their session expires. Defaults to
False.

• force (bool) – If the user is inactive, setting this to True will log them in regardless.
Defaults to False.

• fresh – setting this to False will log in the user with a session

marked as not “fresh”. Defaults to True. :type fresh: bool

flask.ext.login.logout_user()
Logs a user out. (You do not need to pass the actual user.) This will also clean up the remember me cookie if it
exists.

flask.ext.login.confirm_login()
This sets the current session as fresh. Sessions become stale when they are reloaded from a cookie.

Protecting Views

flask.ext.login.login_required(func)
If you decorate a view with this, it will ensure that the current user is logged in and authenticated before calling
the actual view. (If they are not, it calls the LoginManager.unauthorized callback.) For example:

@app.route('/post')
@login_required
def post():

pass

If there are only certain times you need to require that your user is logged in, you can do so with:

12.2. Login Mechanisms 27

https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#object
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

Flask-Login Documentation, Release 0.3.2

if not current_user.is_authenticated:
return current_app.login_manager.unauthorized()

...which is essentially the code that this function adds to your views.

It can be convenient to globally turn off authentication when unit testing. To enable this, if the application
configuration variable LOGIN_DISABLED is set to True, this decorator will be ignored.

Parameters func (function) – The view function to decorate.

flask.ext.login.fresh_login_required(func)
If you decorate a view with this, it will ensure that the current user’s login is fresh - i.e. there session was not
restored from a ‘remember me’ cookie. Sensitive operations, like changing a password or e-mail, should be
protected with this, to impede the efforts of cookie thieves.

If the user is not authenticated, LoginManager.unauthorized() is called as normal. If they are authen-
ticated, but their session is not fresh, it will call LoginManager.needs_refresh() instead. (In that case,
you will need to provide a LoginManager.refresh_view .)

Behaves identically to the login_required() decorator with respect to configutation variables.

Parameters func (function) – The view function to decorate.

User Object Helpers

class flask.ext.login.UserMixin
This provides default implementations for the methods that Flask-Login expects user objects to have.

Utilities

flask.ext.login.login_url(login_view, next_url=None, next_field=’next’)
Creates a URL for redirecting to a login page. If only login_view is provided, this will just return the URL
for it. If next_url is provided, however, this will append a next=URL parameter to the query string so that
the login view can redirect back to that URL.

Parameters

• login_view (str) – The name of the login view. (Alternately, the actual URL to the
login view.)

• next_url (str) – The URL to give the login view for redirection.

• next_field (str) – What field to store the next URL in. (It defaults to next.)

flask.ext.login.make_secure_token(*args, **options)
This will create a secure token that you can use as an authentication token for your users. It uses heavy-duty
HMAC encryption to prevent people from guessing the information. (To make it even more effective, if you will
never need to regenerate the token, you can pass some random data as one of the arguments.)

Parameters

• *args – The data to include in the token.

• **options (kwargs) – To manually specify a secret key, pass key=THE_KEY. Other-
wise, the current_app secret key will be used.

28 Chapter 12. API Documentation

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Flask-Login Documentation, Release 0.3.2

Signals

See the Flask documentation on signals for information on how to use these signals in your code.

flask.ext.login.user_logged_in
Sent when a user is logged in. In addition to the app (which is the sender), it is passed user, which is the user
being logged in.

flask.ext.login.user_logged_out
Sent when a user is logged out. In addition to the app (which is the sender), it is passed user, which is the user
being logged out.

flask.ext.login.user_login_confirmed
Sent when a user’s login is confirmed, marking it as fresh. (It is not called for a normal login.) It receives no
additional arguments besides the app.

flask.ext.login.user_unauthorized
Sent when the unauthorized method is called on a LoginManager. It receives no additional arguments
besides the app.

flask.ext.login.user_needs_refresh
Sent when the needs_refresh method is called on a LoginManager. It receives no additional arguments
besides the app.

flask.ext.login.session_protected
Sent whenever session protection takes effect, and a session is either marked non-fresh or deleted. It receives no
additional arguments besides the app.

12.6. Signals 29

http://flask.pocoo.org/docs/signals/
https://docs.python.org/2/library/user.html#module-user
https://docs.python.org/2/library/user.html#module-user

Flask-Login Documentation, Release 0.3.2

30 Chapter 12. API Documentation

Index

A
anonymous_user (flask.ext.login.LoginManager at-

tribute), 26

C
confirm_login() (in module flask.ext.login), 27
current_user (in module flask.ext.login), 27

F
fresh_login_required() (in module flask.ext.login), 28

H
header_loader() (flask.ext.login.LoginManager method),

26

L
login_fresh() (in module flask.ext.login), 27
login_message (flask.ext.login.LoginManager attribute),

26
login_required() (in module flask.ext.login), 27
login_url() (in module flask.ext.login), 28
login_user() (in module flask.ext.login), 27
login_view (flask.ext.login.LoginManager attribute), 26
LoginManager (class in flask.ext.login), 25
logout_user() (in module flask.ext.login), 27

M
make_secure_token() (in module flask.ext.login), 28

N
needs_refresh() (flask.ext.login.LoginManager method),

25
needs_refresh_handler() (flask.ext.login.LoginManager

method), 27
needs_refresh_message (flask.ext.login.LoginManager

attribute), 26

R
refresh_view (flask.ext.login.LoginManager attribute), 26

S
session_protected (in module flask.ext.login), 29
setup_app() (flask.ext.login.LoginManager method), 25

T
token_loader() (flask.ext.login.LoginManager method),

26

U
unauthorized() (flask.ext.login.LoginManager method),

25
unauthorized_handler() (flask.ext.login.LoginManager

method), 26
user_loader() (flask.ext.login.LoginManager method), 26
user_logged_in (in module flask.ext.login), 29
user_logged_out (in module flask.ext.login), 29
user_login_confirmed (in module flask.ext.login), 29
user_needs_refresh (in module flask.ext.login), 29
user_unauthorized (in module flask.ext.login), 29
UserMixin (class in flask.ext.login), 28

31

	Configuring your Application
	How it Works
	Your User Class
	Login Example
	Customizing the Login Process
	Login using Authorization header
	Custom Login using Request Loader
	Anonymous Users
	Remember Me
	Alternative Tokens
	Fresh Logins
	Cookie Settings

	Session Protection
	Localization
	API Documentation
	Configuring Login
	Login Mechanisms
	Protecting Views
	User Object Helpers
	Utilities
	Signals

