

 Navigation

 	
 index

 	Flask-Login 0.3.1 documentation

Flask-Login

Flask-Login provides user session management for Flask. It handles the common
tasks of logging in, logging out, and remembering your users’ sessions over
extended periods of time.

It will:

	Store the active user’s ID in the session, and let you log them in and out
easily.

	Let you restrict views to logged-in (or logged-out) users.

	Handle the normally-tricky “remember me” functionality.

	Help protect your users’ sessions from being stolen by cookie thieves.

	Possibly integrate with Flask-Principal or other authorization extensions
later on.

However, it does not:

	Impose a particular database or other storage method on you. You are
entirely in charge of how the user is loaded.

	Restrict you to using usernames and passwords, OpenIDs, or any other method
of authenticating.

	Handle permissions beyond “logged in or not.”

	Handle user registration or account recovery.

	Configuring your Application

	How it Works

	Your User Class

	Login Example

	Customizing the Login Process

	Login using Authorization header

	Custom Login using Request Loader

	Anonymous Users

	Remember Me
	Alternative Tokens

	Fresh Logins

	Cookie Settings

	Session Protection

	Localization

	API Documentation
	Configuring Login

	Login Mechanisms

	Protecting Views

	User Object Helpers

	Utilities

	Signals

Configuring your Application

The most important part of an application that uses Flask-Login is the
LoginManager class. You should create one for your application somewhere in
your code, like this:

login_manager = LoginManager()

The login manager contains the code that lets your application and Flask-Login
work together, such as how to load a user from an ID, where to send users when
they need to log in, and the like.

Once the actual application object has been created, you can configure it for
login with:

login_manager.init_app(app)

How it Works

You will need to provide a user_loader callback. This callback
is used to reload the user object from the user ID stored in the session. It
should take the unicode [http://docs.python.org/library/functions.html#unicode] ID of a user, and return the corresponding user
object. For example:

@login_manager.user_loader
def load_user(user_id):
 return User.get(user_id)

It should return None [http://docs.python.org/library/constants.html#None] (not raise an exception) if the ID is not valid.
(In that case, the ID will manually be removed from the session and processing
will continue.)

Your User Class

The class that you use to represent users needs to implement these properties
and methods:

	is_authenticated

	Returns True [http://docs.python.org/library/constants.html#True] if the user is authenticated, i.e. they have provided
valid credentials. (Only authenticated users will fulfill the criteria
of login_required.)

	is_active

	Returns True [http://docs.python.org/library/constants.html#True] if this is an active user - in addition to being
authenticated, they also have activated their account, not been suspended,
or any condition your application has for rejecting an account. Inactive
accounts may not log in (without being forced of course).

	is_anonymous

	Returns True [http://docs.python.org/library/constants.html#True] if this is an anonymous user. (Actual users should return
False [http://docs.python.org/library/constants.html#False] instead.)

	get_id()

	Returns a unicode [http://docs.python.org/library/functions.html#unicode] that uniquely identifies this user, and can be used
to load the user from the user_loader callback. Note
that this must be a unicode [http://docs.python.org/library/functions.html#unicode] - if the ID is natively an int [http://docs.python.org/library/functions.html#int] or some
other type, you will need to convert it to unicode [http://docs.python.org/library/functions.html#unicode].

To make implementing a user class easier, you can inherit from UserMixin,
which provides default implementations for all of these methods. (It’s not
required, though.)

Login Example

Once a user has authenticated, you log them in with the login_user
function. For example:

@app.route('/login', methods=['GET', 'POST'])
def login():
 # Here we use a class of some kind to represent and validate our
 # client-side form data. For example, WTForms is a library that will
 # handle this for us, and we use a custom LoginForm to validate.
 form = LoginForm()
 if form.validate_on_submit():
 # Login and validate the user.
 # user should be an instance of your `User` class
 login_user(user)

 flask.flash('Logged in successfully.')

 next = flask.request.args.get('next')
 # next_is_valid should check if the user has valid
 # permission to access the `next` url
 if not next_is_valid(next):
 return flask.abort(400)

 return flask.redirect(next or flask.url_for('index'))
 return flask.render_template('login.html', form=form)

Warning: You MUST validate the value of the next [http://docs.python.org/library/functions.html#next] parameter. If you do not,
your application will be vulnerable to open redirects.

It’s that simple. You can then access the logged-in user with the
current_user proxy, which is available in every template:

{% if current_user.is_authenticated %}
 Hi {{ current_user.name }}!
{% endif %}

Views that require your users to be logged in can be
decorated with the login_required decorator:

@app.route("/settings")
@login_required
def settings():
 pass

When the user is ready to log out:

@app.route("/logout")
@login_required
def logout():
 logout_user()
 return redirect(somewhere)

They will be logged out, and any cookies for their session will be cleaned up.

Customizing the Login Process

By default, when a user attempts to access a login_required view without
being logged in, Flask-Login will flash a message and redirect them to the
log in view. (If the login view is not set, it will abort with a 401 error.)

The name of the log in view can be set as LoginManager.login_view.
For example:

login_manager.login_view = "users.login"

The default message flashed is Please log in to access this page. To
customize the message, set LoginManager.login_message:

login_manager.login_message = u"Bonvolu ensaluti por uzi tiun paĝon."

To customize the message category, set LoginManager.login_message_category:

login_manager.login_message_category = "info"

When the log in view is redirected to, it will have a next variable in the
query string, which is the page that the user was trying to access.

If you would like to customize the process further, decorate a function with
LoginManager.unauthorized_handler:

@login_manager.unauthorized_handler
def unauthorized():
 # do stuff
 return a_response

Login using Authorization header

Caution

This method will be deprecated; use the request_loader
below instead.

Sometimes you want to support Basic Auth login using the Authorization
header, such as for api requests. To support login via header you will need
to provide a header_loader callback. This callback should behave
the same as your user_loader callback, except that it accepts
a header value instead of a user id. For example:

@login_manager.header_loader
def load_user_from_header(header_val):
 header_val = header_val.replace('Basic ', '', 1)
 try:
 header_val = base64.b64decode(header_val)
 except TypeError:
 pass
 return User.query.filter_by(api_key=header_val).first()

By default the Authorization header’s value is passed to your
header_loader callback. You can change the header used with
the AUTH_HEADER_NAME configuration.

Custom Login using Request Loader

Sometimes you want to login users without using cookies, such as using header
values or an api key passed as a query argument. In these cases, you should use
the request_loader callback. This callback should behave the
same as your user_loader callback, except that it accepts the
Flask request instead of a user_id.

For example, to support login from both a url argument and from Basic Auth
using the Authorization header:

@login_manager.request_loader
def load_user_from_request(request):

 # first, try to login using the api_key url arg
 api_key = request.args.get('api_key')
 if api_key:
 user = User.query.filter_by(api_key=api_key).first()
 if user:
 return user

 # next, try to login using Basic Auth
 api_key = request.headers.get('Authorization')
 if api_key:
 api_key = api_key.replace('Basic ', '', 1)
 try:
 api_key = base64.b64decode(api_key)
 except TypeError:
 pass
 user = User.query.filter_by(api_key=api_key).first()
 if user:
 return user

 # finally, return None if both methods did not login the user
 return None

Anonymous Users

By default, when a user is not actually logged in, current_user is set to
an AnonymousUserMixin object. It has the following properties and methods:

	is_active and is_authenticated are False [http://docs.python.org/library/constants.html#False]

	is_anonymous is True [http://docs.python.org/library/constants.html#True]

	get_id() returns None [http://docs.python.org/library/constants.html#None]

If you have custom requirements for anonymous users (for example, they need
to have a permissions field), you can provide a callable (either a class or
factory function) that creates anonymous users to the LoginManager with:

login_manager.anonymous_user = MyAnonymousUser

Remember Me

“Remember Me” functionality can be tricky to implement. However, Flask-Login
makes it nearly transparent - just pass remember=True to the login_user
call. A cookie will be saved on the user’s computer, and then Flask-Login
will automatically restore the user ID from that cookie if it is not in the
session. The cookie is tamper-proof, so if the user tampers with it (i.e.
inserts someone else’s user ID in place of their own), the cookie will merely
be rejected, as if it was not there.

That level of functionality is handled automatically. However, you can (and
should, if your application handles any kind of sensitive data) provide
additional infrastructure to increase the security of your remember cookies.

Alternative Tokens

Using the user ID as the value of the remember token is not necessarily
secure. More secure is a hash of the username and password combined, or
something similar. To add an alternative token, add a method to your user
objects:

	get_auth_token()

	Returns an authentication token (as unicode [http://docs.python.org/library/functions.html#unicode]) for the user. The auth
token should uniquely identify the user, and preferably not be guessable
by public information about the user such as their UID and name - nor
should it expose such information.

Correspondingly, you should set a token_loader function on the
LoginManager, which takes a token (as stored in the cookie) and returns the
appropriate User object.

The make_secure_token function is provided for creating auth tokens
conveniently. It will concatenate all of its arguments, then HMAC it with
the app’s secret key to ensure maximum cryptographic security. (If you store
the user’s token in the database permanently, then you may wish to add random
data to the token to further impede guessing.)

If your application uses passwords to authenticate users, including the
password (or the salted password hash you should be using) in the auth
token will ensure that if a user changes their password, their old
authentication tokens will cease to be valid.

Fresh Logins

When a user logs in, their session is marked as “fresh,” which indicates that
they actually authenticated on that session. When their session is destroyed
and they are logged back in with a “remember me” cookie, it is marked as
“non-fresh.” login_required does not differentiate between freshness, which
is fine for most pages. However, sensitive actions like changing one’s
personal information should require a fresh login. (Actions like changing
one’s password should always require a password re-entry regardless.)

fresh_login_required, in addition to verifying that the user is logged
in, will also ensure that their login is fresh. If not, it will send them to
a page where they can re-enter their credentials. You can customize its
behavior in the same ways as you can customize login_required, by setting
LoginManager.refresh_view, needs_refresh_message, and
needs_refresh_message_category:

login_manager.refresh_view = "accounts.reauthenticate"
login_manager.needs_refresh_message = (
 u"To protect your account, please reauthenticate to access this page."
)
login_manager.needs_refresh_message_category = "info"

Or by providing your own callback to handle refreshing:

@login_manager.needs_refresh_handler
def refresh():
 # do stuff
 return a_response

To mark a session as fresh again, call the confirm_login function.

Cookie Settings

The details of the cookie can be customized in the application settings.

	REMEMBER_COOKIE_NAME
	The name of the cookie to store the “remember me”
information in. Default: remember_token

	REMEMBER_COOKIE_DURATION
	The amount of time before the cookie expires, as
a datetime.timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] object.
Default: 365 days (1 non-leap Gregorian year)

	REMEMBER_COOKIE_DOMAIN
	If the “Remember Me” cookie should cross domains,
set the domain value here (i.e. .example.com
would allow the cookie to be used on all
subdomains of example.com).
Default: None [http://docs.python.org/library/constants.html#None]

	REMEMBER_COOKIE_PATH
	Limits the “Remember Me” cookie to a certain path.
Default: /

Session Protection

While the features above help secure your “Remember Me” token from cookie
thieves, the session cookie is still vulnerable. Flask-Login includes session
protection to help prevent your users’ sessions from being stolen.

You can configure session protection on the LoginManager, and in the app’s
configuration. If it is enabled, it can operate in either basic or strong
mode. To set it on the LoginManager, set the
session_protection attribute to "basic" or "strong":

login_manager.session_protection = "strong"

Or, to disable it:

login_manager.session_protection = None

By default, it is activated in "basic" mode. It can be disabled in the
app’s configuration by setting the SESSION_PROTECTION setting to None [http://docs.python.org/library/constants.html#None],
"basic", or "strong".

When session protection is active, each request, it generates an identifier
for the user’s computer (basically, the MD5 hash of the IP address and user
agent). If the session does not have an associated identifier, the one
generated will be stored. If it has an identifier, and it matches the one
generated, then the request is OK.

If the identifiers do not match in basic mode, or when the session is
permanent, then the session will simply be marked as non-fresh, and anything
requiring a fresh login will force the user to re-authenticate. (Of course,
you must be already using fresh logins where appropriate for this to have an
effect.)

If the identifiers do not match in strong mode for a non-permanent session,
then the entire session (as well as the remember token if it exists) is
deleted.

Localization

By default, the LoginManager uses flash to display messages when a user
is required to log in. These messages are in English. If you require
localization, set the localize_callback attribute of LoginManager to a
function to be called with these messages before they’re sent to flash,
e.g. gettext. This function will be called with the message and its return
value will be sent to flash instead.

API Documentation

This documentation is automatically generated from Flask-Login’s source code.

Configuring Login

	
class flask.ext.login.LoginManager(app=None, add_context_processor=True)[source]

	This object is used to hold the settings used for logging in. Instances of
LoginManager are not bound to specific apps, so you can create
one in the main body of your code and then bind it to your
app in a factory function.

	
setup_app(app, add_context_processor=True)[source]

	This method has been deprecated. Please use
LoginManager.init_app() instead.

	
unauthorized()[source]

	This is called when the user is required to log in. If you register a
callback with LoginManager.unauthorized_handler(), then it will
be called. Otherwise, it will take the following actions:

	Flash LoginManager.login_message to the user.

	If the app is using blueprints find the login view for
the current blueprint using blueprint_login_views. If the app
is not using blueprints or the login view for the current
blueprint is not specified use the value of login_view.
Redirect the user to the login view. (The page they were
attempting to access will be passed in the next query
string variable, so you can redirect there if present instead
of the homepage.)

If LoginManager.login_view is not defined, then it will simply
raise a HTTP 401 (Unauthorized) error instead.

This should be returned from a view or before/after_request function,
otherwise the redirect will have no effect.

	
needs_refresh()[source]

	This is called when the user is logged in, but they need to be
reauthenticated because their session is stale. If you register a
callback with needs_refresh_handler, then it will be called.
Otherwise, it will take the following actions:

	Flash LoginManager.needs_refresh_message to the user.

	Redirect the user to LoginManager.refresh_view. (The page
they were attempting to access will be passed in the next
query string variable, so you can redirect there if present
instead of the homepage.)

If LoginManager.refresh_view is not defined, then it will
simply raise a HTTP 401 (Unauthorized) error instead.

This should be returned from a view or before/after_request function,
otherwise the redirect will have no effect.

General Configuration

	
user_loader(callback)[source]

	This sets the callback for reloading a user from the session. The
function you set should take a user ID (a unicode) and return a
user object, or None if the user does not exist.

	Parameters:	callback (callable [http://docs.python.org/library/functions.html#callable]) – The callback for retrieving a user object.

	
header_loader(callback)[source]

	This sets the callback for loading a user from a header value.
The function you set should take an authentication token and
return a user object, or None [http://docs.python.org/library/constants.html#None] if the user does not exist.

	Parameters:	callback (callable [http://docs.python.org/library/functions.html#callable]) – The callback for retrieving a user object.

	
token_loader(callback)[source]

	This sets the callback for loading a user from an authentication
token. The function you set should take an authentication token
(a unicode, as returned by a user’s get_auth_token method) and
return a user object, or None if the user does not exist.

	Parameters:	callback (callable [http://docs.python.org/library/functions.html#callable]) – The callback for retrieving a user object.

	
anonymous_user

	A class or factory function that produces an anonymous user, which
is used when no one is logged in.

unauthorized Configuration

	
login_view

	The name of the view to redirect to when the user needs to log in. (This
can be an absolute URL as well, if your authentication machinery is
external to your application.)

	
login_message

	The message to flash when a user is redirected to the login page.

	
unauthorized_handler(callback)[source]

	This will set the callback for the unauthorized method, which among
other things is used by login_required. It takes no arguments, and
should return a response to be sent to the user instead of their
normal view.

	Parameters:	callback (callable [http://docs.python.org/library/functions.html#callable]) – The callback for unauthorized users.

needs_refresh Configuration

	
refresh_view

	The name of the view to redirect to when the user needs to
reauthenticate.

	
needs_refresh_message

	The message to flash when a user is redirected to the reauthentication
page.

	
needs_refresh_handler(callback)[source]

	This will set the callback for the needs_refresh method, which among
other things is used by fresh_login_required. It takes no arguments,
and should return a response to be sent to the user instead of their
normal view.

	Parameters:	callback (callable [http://docs.python.org/library/functions.html#callable]) – The callback for unauthorized users.

Login Mechanisms

	
flask.ext.login.current_user

	A proxy for the current user.

	
flask.ext.login.login_fresh()[source]

	This returns True if the current login is fresh.

	
flask.ext.login.login_user(user, remember=False, force=False, fresh=True)[source]

	Logs a user in. You should pass the actual user object to this. If the
user’s is_active property is False, they will not be logged in
unless force is True.

This will return True if the log in attempt succeeds, and False if
it fails (i.e. because the user is inactive).

	Parameters:	
	user (object [http://docs.python.org/library/functions.html#object]) – The user object to log in.

	remember (bool [http://docs.python.org/library/functions.html#bool]) – Whether to remember the user after their session expires.
Defaults to False.

	force (bool [http://docs.python.org/library/functions.html#bool]) – If the user is inactive, setting this to True will log
them in regardless. Defaults to False.

	fresh – setting this to False will log in the user with a session

marked as not “fresh”. Defaults to True.
:type fresh: bool

	
flask.ext.login.logout_user()[source]

	Logs a user out. (You do not need to pass the actual user.) This will
also clean up the remember me cookie if it exists.

	
flask.ext.login.confirm_login()[source]

	This sets the current session as fresh. Sessions become stale when they
are reloaded from a cookie.

Protecting Views

	
flask.ext.login.login_required(func)[source]

	If you decorate a view with this, it will ensure that the current user is
logged in and authenticated before calling the actual view. (If they are
not, it calls the LoginManager.unauthorized callback.) For
example:

@app.route('/post')
@login_required
def post():
 pass

If there are only certain times you need to require that your user is
logged in, you can do so with:

if not current_user.is_authenticated:
 return current_app.login_manager.unauthorized()

...which is essentially the code that this function adds to your views.

It can be convenient to globally turn off authentication when unit testing.
To enable this, if the application configuration variable LOGIN_DISABLED
is set to True [http://docs.python.org/library/constants.html#True], this decorator will be ignored.

	Parameters:	func (function) – The view function to decorate.

	
flask.ext.login.fresh_login_required(func)[source]

	If you decorate a view with this, it will ensure that the current user’s
login is fresh - i.e. there session was not restored from a ‘remember me’
cookie. Sensitive operations, like changing a password or e-mail, should
be protected with this, to impede the efforts of cookie thieves.

If the user is not authenticated, LoginManager.unauthorized() is
called as normal. If they are authenticated, but their session is not
fresh, it will call LoginManager.needs_refresh() instead. (In that
case, you will need to provide a LoginManager.refresh_view.)

Behaves identically to the login_required() decorator with respect
to configutation variables.

	Parameters:	func (function) – The view function to decorate.

User Object Helpers

	
class flask.ext.login.UserMixin[source]

	This provides default implementations for the methods that Flask-Login
expects user objects to have.

Utilities

	
flask.ext.login.login_url(login_view, next_url=None, next_field='next')[source]

	Creates a URL for redirecting to a login page. If only login_view is
provided, this will just return the URL for it. If next_url is provided,
however, this will append a next=URL parameter to the query string
so that the login view can redirect back to that URL.

	Parameters:	
	login_view (str [http://docs.python.org/library/functions.html#str]) – The name of the login view. (Alternately, the actual
URL to the login view.)

	next_url (str [http://docs.python.org/library/functions.html#str]) – The URL to give the login view for redirection.

	next_field (str [http://docs.python.org/library/functions.html#str]) – What field to store the next URL in. (It defaults to
next.)

	
flask.ext.login.make_secure_token(*args, **options)[source]

	This will create a secure token that you can use as an authentication
token for your users. It uses heavy-duty HMAC encryption to prevent people
from guessing the information. (To make it even more effective, if you
will never need to regenerate the token, you can pass some random data
as one of the arguments.)

	Parameters:	
	*args – The data to include in the token.

	**options (kwargs) – To manually specify a secret key, pass key=THE_KEY.
Otherwise, the current_app secret key will be used.

Signals

See the Flask documentation on signals [http://flask.pocoo.org/docs/signals/] for information on how to use these
signals in your code.

	
flask.ext.login.user_logged_in

	Sent when a user is logged in. In addition to the app (which is the
sender), it is passed user [http://docs.python.org/library/user.html#module-user], which is the user being logged in.

	
flask.ext.login.user_logged_out

	Sent when a user is logged out. In addition to the app (which is the
sender), it is passed user [http://docs.python.org/library/user.html#module-user], which is the user being logged out.

	
flask.ext.login.user_login_confirmed

	Sent when a user’s login is confirmed, marking it as fresh. (It is not
called for a normal login.)
It receives no additional arguments besides the app.

	
flask.ext.login.user_unauthorized

	Sent when the unauthorized method is called on a LoginManager. It
receives no additional arguments besides the app.

	
flask.ext.login.user_needs_refresh

	Sent when the needs_refresh method is called on a LoginManager. It
receives no additional arguments besides the app.

	
flask.ext.login.session_protected

	Sent whenever session protection takes effect, and a session is either
marked non-fresh or deleted. It receives no additional arguments besides
the app.

 Copyright 2011, Matthew Frazier.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Flask-Login 0.3.1 documentation

Index

 A
 | C
 | F
 | H
 | L
 | M
 | N
 | R
 | S
 | T
 | U

A

 	

 	anonymous_user (flask.ext.login.LoginManager attribute)

C

 	

 	confirm_login() (in module flask.ext.login)

 	

 	current_user (in module flask.ext.login)

F

 	

 	fresh_login_required() (in module flask.ext.login)

H

 	

 	header_loader() (flask.ext.login.LoginManager method)

L

 	

 	login_fresh() (in module flask.ext.login)

 	login_message (flask.ext.login.LoginManager attribute)

 	login_required() (in module flask.ext.login)

 	login_url() (in module flask.ext.login)

 	

 	login_user() (in module flask.ext.login)

 	login_view (flask.ext.login.LoginManager attribute)

 	LoginManager (class in flask.ext.login)

 	logout_user() (in module flask.ext.login)

M

 	

 	make_secure_token() (in module flask.ext.login)

N

 	

 	needs_refresh() (flask.ext.login.LoginManager method)

 	needs_refresh_handler() (flask.ext.login.LoginManager method)

 	

 	needs_refresh_message (flask.ext.login.LoginManager attribute)

R

 	

 	refresh_view (flask.ext.login.LoginManager attribute)

S

 	

 	session_protected (in module flask.ext.login)

 	

 	setup_app() (flask.ext.login.LoginManager method)

T

 	

 	token_loader() (flask.ext.login.LoginManager method)

U

 	

 	unauthorized() (flask.ext.login.LoginManager method)

 	unauthorized_handler() (flask.ext.login.LoginManager method)

 	user_loader() (flask.ext.login.LoginManager method)

 	user_logged_in (in module flask.ext.login)

 	user_logged_out (in module flask.ext.login)

 	

 	user_login_confirmed (in module flask.ext.login)

 	user_needs_refresh (in module flask.ext.login)

 	user_unauthorized (in module flask.ext.login)

 	UserMixin (class in flask.ext.login)

 Copyright 2011, Matthew Frazier.
 Created using Sphinx 1.3.1.

 _static/file.png

_modules/index.html

 Navigation

 		
 index

 		Flask-Login 0.3.1 documentation »

 All modules for which code is available

		flask.signals

		flask_login

		werkzeug.local

 © Copyright 2011, Matthew Frazier.
 Created using Sphinx 1.3.1.

_static/up.png

_modules/flask_login.html

 Navigation

 		
 index

 		Flask-Login 0.3.1 documentation »

 		Module code »

 Source code for flask_login

-*- coding: utf-8 -*-
'''
 flask.ext.login

 This module provides user session management for Flask. It lets you log
 your users in and out in a database-independent manner.

 :copyright: (c) 2011 by Matthew Frazier.
 :license: MIT/X11, see LICENSE for more details.
'''

__version_info__ = ('0', '3', '1')
__version__ = '.'.join(__version_info__)
__author__ = 'Matthew Frazier'
__maintainer__ = 'Max Countryman'
__license__ = 'MIT/X11'
__copyright__ = '(c) 2011 by Matthew Frazier'
__all__ = ['LoginManager']

from flask import (_request_ctx_stack, abort, current_app, flash, redirect,
 request, session, url_for, has_request_context)
from flask.signals import Namespace

from werkzeug.local import LocalProxy
from werkzeug.security import safe_str_cmp
from werkzeug.urls import url_decode, url_encode

from datetime import datetime, timedelta
from functools import wraps
from hashlib import sha512

import hmac
import warnings
import sys

if sys.version < '3': # pragma: no cover
 from urlparse import urlparse, urlunparse
else: # pragma: no cover
 from urllib.parse import urlparse, urlunparse
 unicode = str

_signals = Namespace()

#: A proxy for the current user. If no user is logged in, this will be an
#: anonymous user
current_user = LocalProxy(lambda: _get_user())

#: The default name of the "remember me" cookie (``remember_token``)
COOKIE_NAME = 'remember_token'

#: The default time before the "remember me" cookie expires (365 days).
COOKIE_DURATION = timedelta(days=365)

#: Whether the "remember me" cookie requires Secure; defaults to ``None``
COOKIE_SECURE = None

#: Whether the "remember me" cookie uses HttpOnly or not; defaults to ``False``
COOKIE_HTTPONLY = False

#: The default flash message to display when users need to log in.
LOGIN_MESSAGE = u'Please log in to access this page.'

#: The default flash message category to display when users need to log in.
LOGIN_MESSAGE_CATEGORY = 'message'

#: The default flash message to display when users need to reauthenticate.
REFRESH_MESSAGE = u'Please reauthenticate to access this page.'

#: The default flash message category to display when users need to
#: reauthenticate.
REFRESH_MESSAGE_CATEGORY = 'message'

#: The default attribute to retreive the unicode id of the user
ID_ATTRIBUTE = 'get_id'

#: Default name of the auth header (``Authorization``)
AUTH_HEADER_NAME = 'Authorization'

A set of session keys that are populated by Flask-Login. Use this set to
purge keys safely and accurately.
SESSION_KEYS = {'user_id', '_id', '_fresh'}

[docs]class LoginManager(object):
 '''
 This object is used to hold the settings used for logging in. Instances of
 :class:`LoginManager` are *not* bound to specific apps, so you can create
 one in the main body of your code and then bind it to your
 app in a factory function.
 '''
 def __init__(self, app=None, add_context_processor=True):
 #: A class or factory function that produces an anonymous user, which
 #: is used when no one is logged in.
 self.anonymous_user = AnonymousUserMixin

 #: The name of the view to redirect to when the user needs to log in.
 #: (This can be an absolute URL as well, if your authentication
 #: machinery is external to your application.)
 self.login_view = None

 #: Names of views to redirect to when the user needs to log in,
 #: per blueprint. If the key value is set to None the value of
 #: :attr:`login_view` will be used instead.
 self.blueprint_login_views = {}

 #: The message to flash when a user is redirected to the login page.
 self.login_message = LOGIN_MESSAGE

 #: The message category to flash when a user is redirected to the login
 #: page.
 self.login_message_category = LOGIN_MESSAGE_CATEGORY

 #: The name of the view to redirect to when the user needs to
 #: reauthenticate.
 self.refresh_view = None

 #: The message to flash when a user is redirected to the 'needs
 #: refresh' page.
 self.needs_refresh_message = REFRESH_MESSAGE

 #: The message category to flash when a user is redirected to the
 #: 'needs refresh' page.
 self.needs_refresh_message_category = REFRESH_MESSAGE_CATEGORY

 #: The mode to use session protection in. This can be either
 #: ``'basic'`` (the default) or ``'strong'``, or ``None`` to disable
 #: it.
 self.session_protection = 'basic'

 #: If present, used to translate flash messages ``self.login_message``
 #: and ``self.needs_refresh_message``
 self.localize_callback = None

 self.token_callback = None

 self.user_callback = None

 self.unauthorized_callback = None

 self.needs_refresh_callback = None

 self.id_attribute = ID_ATTRIBUTE

 self.header_callback = None

 self.request_callback = None

 if app is not None:
 self.init_app(app, add_context_processor)

[docs] def setup_app(self, app, add_context_processor=True): # pragma: no cover
 '''
 This method has been deprecated. Please use
 :meth:`LoginManager.init_app` instead.
 '''
 warnings.warn('Warning setup_app is deprecated. Please use init_app.',
 DeprecationWarning)
 self.init_app(app, add_context_processor)

 def init_app(self, app, add_context_processor=True):
 '''
 Configures an application. This registers an `after_request` call, and
 attaches this `LoginManager` to it as `app.login_manager`.

 :param app: The :class:`flask.Flask` object to configure.
 :type app: :class:`flask.Flask`
 :param add_context_processor: Whether to add a context processor to
 the app that adds a `current_user` variable to the template.
 Defaults to ``True``.
 :type add_context_processor: bool
 '''
 app.login_manager = self
 app.after_request(self._update_remember_cookie)

 self._login_disabled = app.config.get('LOGIN_DISABLED', False)

 if add_context_processor:
 app.context_processor(_user_context_processor)

[docs] def unauthorized(self):
 '''
 This is called when the user is required to log in. If you register a
 callback with :meth:`LoginManager.unauthorized_handler`, then it will
 be called. Otherwise, it will take the following actions:

 - Flash :attr:`LoginManager.login_message` to the user.

 - If the app is using blueprints find the login view for
 the current blueprint using `blueprint_login_views`. If the app
 is not using blueprints or the login view for the current
 blueprint is not specified use the value of `login_view`.
 Redirect the user to the login view. (The page they were
 attempting to access will be passed in the ``next`` query
 string variable, so you can redirect there if present instead
 of the homepage.)

 If :attr:`LoginManager.login_view` is not defined, then it will simply
 raise a HTTP 401 (Unauthorized) error instead.

 This should be returned from a view or before/after_request function,
 otherwise the redirect will have no effect.
 '''
 user_unauthorized.send(current_app._get_current_object())

 if self.unauthorized_callback:
 return self.unauthorized_callback()

 if request.blueprint in self.blueprint_login_views:
 login_view = self.blueprint_login_views[request.blueprint]
 else:
 login_view = self.login_view

 if not login_view:
 abort(401)

 if self.login_message:
 if self.localize_callback is not None:
 flash(self.localize_callback(self.login_message),
 category=self.login_message_category)
 else:
 flash(self.login_message, category=self.login_message_category)

 return redirect(login_url(login_view, request.url))

[docs] def user_loader(self, callback):
 '''
 This sets the callback for reloading a user from the session. The
 function you set should take a user ID (a ``unicode``) and return a
 user object, or ``None`` if the user does not exist.

 :param callback: The callback for retrieving a user object.
 :type callback: callable
 '''
 self.user_callback = callback
 return callback

[docs] def header_loader(self, callback):
 '''
 This sets the callback for loading a user from a header value.
 The function you set should take an authentication token and
 return a user object, or `None` if the user does not exist.

 :param callback: The callback for retrieving a user object.
 :type callback: callable
 '''
 self.header_callback = callback
 return callback

 def request_loader(self, callback):
 '''
 This sets the callback for loading a user from a Flask request.
 The function you set should take Flask request object and
 return a user object, or `None` if the user does not exist.

 :param callback: The callback for retrieving a user object.
 :type callback: callable
 '''
 self.request_callback = callback
 return callback

[docs] def token_loader(self, callback):
 '''
 This sets the callback for loading a user from an authentication
 token. The function you set should take an authentication token
 (a ``unicode``, as returned by a user's `get_auth_token` method) and
 return a user object, or ``None`` if the user does not exist.

 :param callback: The callback for retrieving a user object.
 :type callback: callable
 '''
 self.token_callback = callback
 return callback

[docs] def unauthorized_handler(self, callback):
 '''
 This will set the callback for the `unauthorized` method, which among
 other things is used by `login_required`. It takes no arguments, and
 should return a response to be sent to the user instead of their
 normal view.

 :param callback: The callback for unauthorized users.
 :type callback: callable
 '''
 self.unauthorized_callback = callback
 return callback

[docs] def needs_refresh_handler(self, callback):
 '''
 This will set the callback for the `needs_refresh` method, which among
 other things is used by `fresh_login_required`. It takes no arguments,
 and should return a response to be sent to the user instead of their
 normal view.

 :param callback: The callback for unauthorized users.
 :type callback: callable
 '''
 self.needs_refresh_callback = callback
 return callback

[docs] def needs_refresh(self):
 '''
 This is called when the user is logged in, but they need to be
 reauthenticated because their session is stale. If you register a
 callback with `needs_refresh_handler`, then it will be called.
 Otherwise, it will take the following actions:

 - Flash :attr:`LoginManager.needs_refresh_message` to the user.

 - Redirect the user to :attr:`LoginManager.refresh_view`. (The page
 they were attempting to access will be passed in the ``next``
 query string variable, so you can redirect there if present
 instead of the homepage.)

 If :attr:`LoginManager.refresh_view` is not defined, then it will
 simply raise a HTTP 401 (Unauthorized) error instead.

 This should be returned from a view or before/after_request function,
 otherwise the redirect will have no effect.
 '''
 user_needs_refresh.send(current_app._get_current_object())

 if self.needs_refresh_callback:
 return self.needs_refresh_callback()

 if not self.refresh_view:
 abort(401)

 if self.localize_callback is not None:
 flash(self.localize_callback(self.needs_refresh_message),
 category=self.needs_refresh_message_category)
 else:
 flash(self.needs_refresh_message,
 category=self.needs_refresh_message_category)

 return redirect(login_url(self.refresh_view, request.url))

 def reload_user(self, user=None):
 ctx = _request_ctx_stack.top

 if user is None:
 user_id = session.get('user_id')
 if user_id is None:
 ctx.user = self.anonymous_user()
 else:
 if self.user_callback is None:
 raise Exception(
 "No user_loader has been installed for this "
 "LoginManager. Add one with the "
 "'LoginManager.user_loader' decorator.")
 user = self.user_callback(user_id)
 if user is None:
 ctx.user = self.anonymous_user()
 else:
 ctx.user = user
 else:
 ctx.user = user

 def _load_user(self):
 '''Loads user from session or remember_me cookie as applicable'''
 user_accessed.send(current_app._get_current_object())

 # first check SESSION_PROTECTION
 config = current_app.config
 if config.get('SESSION_PROTECTION', self.session_protection):
 deleted = self._session_protection()
 if deleted:
 return self.reload_user()

 # If a remember cookie is set, and the session is not, move the
 # cookie user ID to the session.
 #
 # However, the session may have been set if the user has been
 # logged out on this request, 'remember' would be set to clear,
 # so we should check for that and not restore the session.
 is_missing_user_id = 'user_id' not in session
 if is_missing_user_id:
 cookie_name = config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
 header_name = config.get('AUTH_HEADER_NAME', AUTH_HEADER_NAME)
 has_cookie = (cookie_name in request.cookies and
 session.get('remember') != 'clear')
 if has_cookie:
 return self._load_from_cookie(request.cookies[cookie_name])
 elif self.request_callback:
 return self._load_from_request(request)
 elif header_name in request.headers:
 return self._load_from_header(request.headers[header_name])

 return self.reload_user()

 def _session_protection(self):
 sess = session._get_current_object()
 ident = _create_identifier()

 app = current_app._get_current_object()
 mode = app.config.get('SESSION_PROTECTION', self.session_protection)

 # if the sess is empty, it's an anonymous user or just logged out
 # so we can skip this

 if sess and ident != sess.get('_id', None):
 if mode == 'basic' or sess.permanent:
 sess['_fresh'] = False
 session_protected.send(app)
 return False
 elif mode == 'strong':
 for k in SESSION_KEYS:
 sess.pop(k, None)

 sess['remember'] = 'clear'
 session_protected.send(app)
 return True

 return False

 def _load_from_cookie(self, cookie):
 if self.token_callback:
 user = self.token_callback(cookie)
 if user is not None:
 session['user_id'] = getattr(user, self.id_attribute)()
 session['_fresh'] = False
 _request_ctx_stack.top.user = user
 else:
 self.reload_user()
 else:
 user_id = decode_cookie(cookie)
 if user_id is not None:
 session['user_id'] = user_id
 session['_fresh'] = False

 self.reload_user()

 if _request_ctx_stack.top.user is not None:
 app = current_app._get_current_object()
 user_loaded_from_cookie.send(app, user=_get_user())

 def _load_from_header(self, header):
 user = None
 if self.header_callback:
 user = self.header_callback(header)
 if user is not None:
 self.reload_user(user=user)
 app = current_app._get_current_object()
 user_loaded_from_header.send(app, user=_get_user())
 else:
 self.reload_user()

 def _load_from_request(self, request):
 user = None
 if self.request_callback:
 user = self.request_callback(request)
 if user is not None:
 self.reload_user(user=user)
 app = current_app._get_current_object()
 user_loaded_from_request.send(app, user=_get_user())
 else:
 self.reload_user()

 def _update_remember_cookie(self, response):
 # Don't modify the session unless there's something to do.
 if 'remember' in session:
 operation = session.pop('remember', None)

 if operation == 'set' and 'user_id' in session:
 self._set_cookie(response)
 elif operation == 'clear':
 self._clear_cookie(response)

 return response

 def _set_cookie(self, response):
 # cookie settings
 config = current_app.config
 cookie_name = config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
 duration = config.get('REMEMBER_COOKIE_DURATION', COOKIE_DURATION)
 domain = config.get('REMEMBER_COOKIE_DOMAIN')
 path = config.get('REMEMBER_COOKIE_PATH', '/')

 secure = config.get('REMEMBER_COOKIE_SECURE', COOKIE_SECURE)
 httponly = config.get('REMEMBER_COOKIE_HTTPONLY', COOKIE_HTTPONLY)

 # prepare data
 if self.token_callback:
 data = current_user.get_auth_token()
 else:
 data = encode_cookie(unicode(session['user_id']))
 expires = datetime.utcnow() + duration

 # actually set it
 response.set_cookie(cookie_name,
 value=data,
 expires=expires,
 domain=domain,
 path=path,
 secure=secure,
 httponly=httponly)

 def _clear_cookie(self, response):
 config = current_app.config
 cookie_name = config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
 domain = config.get('REMEMBER_COOKIE_DOMAIN')
 path = config.get('REMEMBER_COOKIE_PATH', '/')
 response.delete_cookie(cookie_name, domain=domain, path=path)

[docs]class UserMixin(object):
 '''
 This provides default implementations for the methods that Flask-Login
 expects user objects to have.
 '''
 @property
 def is_active(self):
 return True

 @property
 def is_authenticated(self):
 return True

 @property
 def is_anonymous(self):
 return False

 def get_id(self):
 try:
 return unicode(self.id)
 except AttributeError:
 raise NotImplementedError('No `id` attribute - override `get_id`')

 def __eq__(self, other):
 '''
 Checks the equality of two `UserMixin` objects using `get_id`.
 '''
 if isinstance(other, UserMixin):
 return self.get_id() == other.get_id()
 return NotImplemented

 def __ne__(self, other):
 '''
 Checks the inequality of two `UserMixin` objects using `get_id`.
 '''
 equal = self.__eq__(other)
 if equal is NotImplemented:
 return NotImplemented
 return not equal

 if sys.version_info[0] != 2: # pragma: no cover
 # Python 3 implicitly set __hash__ to None if we override __eq__
 # We set it back to its default implementation
 __hash__ = object.__hash__

class AnonymousUserMixin(object):
 '''
 This is the default object for representing an anonymous user.
 '''
 @property
 def is_authenticated(self):
 return False

 @property
 def is_active(self):
 return False

 @property
 def is_anonymous(self):
 return True

 def get_id(self):
 return

def encode_cookie(payload):
 '''
 This will encode a ``unicode`` value into a cookie, and sign that cookie
 with the app's secret key.

 :param payload: The value to encode, as `unicode`.
 :type payload: unicode
 '''
 return u'{0}|{1}'.format(payload, _cookie_digest(payload))

def decode_cookie(cookie):
 '''
 This decodes a cookie given by `encode_cookie`. If verification of the
 cookie fails, ``None`` will be implicitly returned.

 :param cookie: An encoded cookie.
 :type cookie: str
 '''
 try:
 payload, digest = cookie.rsplit(u'|', 1)
 if hasattr(digest, 'decode'):
 digest = digest.decode('ascii') # pragma: no cover
 except ValueError:
 return

 if safe_str_cmp(_cookie_digest(payload), digest):
 return payload

def make_next_param(login_url, current_url):
 '''
 Reduces the scheme and host from a given URL so it can be passed to
 the given `login` URL more efficiently.

 :param login_url: The login URL being redirected to.
 :type login_url: str
 :param current_url: The URL to reduce.
 :type current_url: str
 '''
 l = urlparse(login_url)
 c = urlparse(current_url)

 if (not l.scheme or l.scheme == c.scheme) and \
 (not l.netloc or l.netloc == c.netloc):
 return urlunparse(('', '', c.path, c.params, c.query, ''))
 return current_url

[docs]def login_url(login_view, next_url=None, next_field='next'):
 '''
 Creates a URL for redirecting to a login page. If only `login_view` is
 provided, this will just return the URL for it. If `next_url` is provided,
 however, this will append a ``next=URL`` parameter to the query string
 so that the login view can redirect back to that URL.

 :param login_view: The name of the login view. (Alternately, the actual
 URL to the login view.)
 :type login_view: str
 :param next_url: The URL to give the login view for redirection.
 :type next_url: str
 :param next_field: What field to store the next URL in. (It defaults to
 ``next``.)
 :type next_field: str
 '''
 if login_view.startswith(('https://', 'http://', '/')):
 base = login_view
 else:
 base = url_for(login_view)

 if next_url is None:
 return base

 parts = list(urlparse(base))
 md = url_decode(parts[4])
 md[next_field] = make_next_param(base, next_url)
 parts[4] = url_encode(md, sort=True)
 return urlunparse(parts)

[docs]def make_secure_token(*args, **options):
 '''
 This will create a secure token that you can use as an authentication
 token for your users. It uses heavy-duty HMAC encryption to prevent people
 from guessing the information. (To make it even more effective, if you
 will never need to regenerate the token, you can pass some random data
 as one of the arguments.)

 :param *args: The data to include in the token.
 :type args: args
 :param **options: To manually specify a secret key, pass ``key=THE_KEY``.
 Otherwise, the ``current_app`` secret key will be used.
 :type **options: kwargs
 '''
 key = options.get('key')
 key = _secret_key(key)

 l = [s if isinstance(s, bytes) else s.encode('utf-8') for s in args]

 payload = b'\0'.join(l)

 token_value = hmac.new(key, payload, sha512).hexdigest()

 if hasattr(token_value, 'decode'): # pragma: no cover
 token_value = token_value.decode('utf-8') # ensure bytes

 return token_value

[docs]def login_fresh():
 '''
 This returns ``True`` if the current login is fresh.
 '''
 return session.get('_fresh', False)

[docs]def login_user(user, remember=False, force=False, fresh=True):
 '''
 Logs a user in. You should pass the actual user object to this. If the
 user's `is_active` property is ``False``, they will not be logged in
 unless `force` is ``True``.

 This will return ``True`` if the log in attempt succeeds, and ``False`` if
 it fails (i.e. because the user is inactive).

 :param user: The user object to log in.
 :type user: object
 :param remember: Whether to remember the user after their session expires.
 Defaults to ``False``.
 :type remember: bool
 :param force: If the user is inactive, setting this to ``True`` will log
 them in regardless. Defaults to ``False``.
 :type force: bool
 :param fresh: setting this to ``False`` will log in the user with a session
 marked as not "fresh". Defaults to ``True``.
 :type fresh: bool
 '''
 if not force and not user.is_active:
 return False

 user_id = getattr(user, current_app.login_manager.id_attribute)()
 session['user_id'] = user_id
 session['_fresh'] = fresh
 session['_id'] = _create_identifier()

 if remember:
 session['remember'] = 'set'

 _request_ctx_stack.top.user = user
 user_logged_in.send(current_app._get_current_object(), user=_get_user())
 return True

[docs]def logout_user():
 '''
 Logs a user out. (You do not need to pass the actual user.) This will
 also clean up the remember me cookie if it exists.
 '''

 user = _get_user()

 if 'user_id' in session:
 session.pop('user_id')

 if '_fresh' in session:
 session.pop('_fresh')

 cookie_name = current_app.config.get('REMEMBER_COOKIE_NAME', COOKIE_NAME)
 if cookie_name in request.cookies:
 session['remember'] = 'clear'

 user_logged_out.send(current_app._get_current_object(), user=user)

 current_app.login_manager.reload_user()
 return True

[docs]def confirm_login():
 '''
 This sets the current session as fresh. Sessions become stale when they
 are reloaded from a cookie.
 '''
 session['_fresh'] = True
 session['_id'] = _create_identifier()
 user_login_confirmed.send(current_app._get_current_object())

[docs]def login_required(func):
 '''
 If you decorate a view with this, it will ensure that the current user is
 logged in and authenticated before calling the actual view. (If they are
 not, it calls the :attr:`LoginManager.unauthorized` callback.) For
 example::

 @app.route('/post')
 @login_required
 def post():
 pass

 If there are only certain times you need to require that your user is
 logged in, you can do so with::

 if not current_user.is_authenticated:
 return current_app.login_manager.unauthorized()

 ...which is essentially the code that this function adds to your views.

 It can be convenient to globally turn off authentication when unit testing.
 To enable this, if the application configuration variable `LOGIN_DISABLED`
 is set to `True`, this decorator will be ignored.

 :param func: The view function to decorate.
 :type func: function
 '''
 @wraps(func)
 def decorated_view(*args, **kwargs):
 if current_app.login_manager._login_disabled:
 return func(*args, **kwargs)
 elif not current_user.is_authenticated:
 return current_app.login_manager.unauthorized()
 return func(*args, **kwargs)
 return decorated_view

[docs]def fresh_login_required(func):
 '''
 If you decorate a view with this, it will ensure that the current user's
 login is fresh - i.e. there session was not restored from a 'remember me'
 cookie. Sensitive operations, like changing a password or e-mail, should
 be protected with this, to impede the efforts of cookie thieves.

 If the user is not authenticated, :meth:`LoginManager.unauthorized` is
 called as normal. If they are authenticated, but their session is not
 fresh, it will call :meth:`LoginManager.needs_refresh` instead. (In that
 case, you will need to provide a :attr:`LoginManager.refresh_view`.)

 Behaves identically to the :func:`login_required` decorator with respect
 to configutation variables.

 :param func: The view function to decorate.
 :type func: function
 '''
 @wraps(func)
 def decorated_view(*args, **kwargs):
 if current_app.login_manager._login_disabled:
 return func(*args, **kwargs)
 elif not current_user.is_authenticated:
 return current_app.login_manager.unauthorized()
 elif not login_fresh():
 return current_app.login_manager.needs_refresh()
 return func(*args, **kwargs)
 return decorated_view

def set_login_view(login_view, blueprint=None):
 '''
 Sets the login view for the app or blueprint. If a blueprint is passed,
 the login view is set for this blueprint on ``blueprint_login_views``.

 :param login_view: The user object to log in.
 :type login_view: str
 :param blueprint: The blueprint which this login view should be set on.
 Defaults to ``None``.
 :type blueprint: object
 '''

 num_login_views = len(current_app.login_manager.blueprint_login_views)
 if blueprint is not None or num_login_views != 0:

 (current_app.login_manager
 .blueprint_login_views[blueprint.name]) = login_view

 if (current_app.login_manager.login_view is not None and
 None not in current_app.login_manager.blueprint_login_views):

 (current_app.login_manager
 .blueprint_login_views[None]) = (current_app.login_manager
 .login_view)

 current_app.login_manager.login_view = None
 else:
 current_app.login_manager.login_view = login_view

def _get_user():
 if has_request_context() and not hasattr(_request_ctx_stack.top, 'user'):
 current_app.login_manager._load_user()

 return getattr(_request_ctx_stack.top, 'user', None)

def _cookie_digest(payload, key=None):
 key = _secret_key(key)

 return hmac.new(key, payload.encode('utf-8'), sha512).hexdigest()

def _get_remote_addr():
 address = request.headers.get('X-Forwarded-For', request.remote_addr)
 if address is not None:
 # An 'X-Forwarded-For' header includes a comma separated list of the
 # addresses, the first address being the actual remote address.
 address = address.encode('utf-8').split(b',')[0].strip()
 return address

def _create_identifier():
 user_agent = request.headers.get('User-Agent')
 if user_agent is not None:
 user_agent = user_agent.encode('utf-8')
 base = '{0}|{1}'.format(_get_remote_addr(), user_agent)
 if str is bytes:
 base = unicode(base, 'utf-8', errors='replace') # pragma: no cover
 h = sha512()
 h.update(base.encode('utf8'))
 return h.hexdigest()

def _user_context_processor():
 return dict(current_user=_get_user())

def _secret_key(key=None):
 if key is None:
 key = current_app.config['SECRET_KEY']

 if isinstance(key, unicode): # pragma: no cover
 key = key.encode('latin1') # ensure bytes

 return key

Signals

#: Sent when a user is logged in. In addition to the app (which is the
#: sender), it is passed `user`, which is the user being logged in.
user_logged_in = _signals.signal('logged-in')

#: Sent when a user is logged out. In addition to the app (which is the
#: sender), it is passed `user`, which is the user being logged out.
user_logged_out = _signals.signal('logged-out')

#: Sent when the user is loaded from the cookie. In addition to the app (which
#: is the sender), it is passed `user`, which is the user being reloaded.
user_loaded_from_cookie = _signals.signal('loaded-from-cookie')

#: Sent when the user is loaded from the header. In addition to the app (which
#: is the #: sender), it is passed `user`, which is the user being reloaded.
user_loaded_from_header = _signals.signal('loaded-from-header')

#: Sent when the user is loaded from the request. In addition to the app (which
#: is the #: sender), it is passed `user`, which is the user being reloaded.
user_loaded_from_request = _signals.signal('loaded-from-request')

#: Sent when a user's login is confirmed, marking it as fresh. (It is not
#: called for a normal login.)
#: It receives no additional arguments besides the app.
user_login_confirmed = _signals.signal('login-confirmed')

#: Sent when the `unauthorized` method is called on a `LoginManager`. It
#: receives no additional arguments besides the app.
user_unauthorized = _signals.signal('unauthorized')

#: Sent when the `needs_refresh` method is called on a `LoginManager`. It
#: receives no additional arguments besides the app.
user_needs_refresh = _signals.signal('needs-refresh')

#: Sent whenever the user is accessed/loaded
#: receives no additional arguments besides the app.
user_accessed = _signals.signal('accessed')

#: Sent whenever session protection takes effect, and a session is either
#: marked non-fresh or deleted. It receives no additional arguments besides
#: the app.
session_protected = _signals.signal('session-protected')

 © Copyright 2011, Matthew Frazier.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Flask-Login 0.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Matthew Frazier.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_modules/werkzeug/local.html

 Navigation

 		
 index

 		Flask-Login 0.3.1 documentation »

 		Module code »

 Source code for werkzeug.local

-*- coding: utf-8 -*-
"""
 werkzeug.local
    ~~~~~~~~~~~~~~

    This module implements context-local objects.

    :copyright: (c) 2011 by the Werkzeug Team, see AUTHORS for more details.
    :license: BSD, see LICENSE for more details.
"""
from werkzeug.wsgi import ClosingIterator
from werkzeug._internal import _patch_wrapper

# since each thread has its own greenlet we can just use those as identifiers
# for the context.  If greenlets are not available we fall back to the
# current thread ident.
try:
    from greenlet import getcurrent as get_ident
except ImportError: # pragma: no cover
    try:
        from thread import get_ident
    except ImportError: # pragma: no cover
        from dummy_thread import get_ident


def release_local(local):
    """Releases the contents of the local for the current context.
    This makes it possible to use locals without a manager.

    Example::

        >>> loc = Local()
        >>> loc.foo = 42
        >>> release_local(loc)
        >>> hasattr(loc, 'foo')
        False

    With this function one can release :class:`Local` objects as well
    as :class:`StackLocal` objects.  However it is not possible to
    release data held by proxies that way, one always has to retain
    a reference to the underlying local object in order to be able
    to release it.

    .. versionadded:: 0.6.1
    """
    local.__release_local__()


class Local(object):
    __slots__ = ('__storage__', '__ident_func__')

    def __init__(self):
        object.__setattr__(self, '__storage__', {})
        object.__setattr__(self, '__ident_func__', get_ident)

    def __iter__(self):
        return iter(self.__storage__.items())

    def __call__(self, proxy):
        """Create a proxy for a name."""
        return LocalProxy(self, proxy)

    def __release_local__(self):
        self.__storage__.pop(self.__ident_func__(), None)

    def __getattr__(self, name):
        try:
            return self.__storage__[self.__ident_func__()][name]
        except KeyError:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        ident = self.__ident_func__()
        storage = self.__storage__
        try:
            storage[ident][name] = value
        except KeyError:
            storage[ident] = {name: value}

    def __delattr__(self, name):
        try:
            del self.__storage__[self.__ident_func__()][name]
        except KeyError:
            raise AttributeError(name)


class LocalStack(object):
    """This class works similar to a :class:`Local` but keeps a stack
    of objects instead.  This is best explained with an example::

        >>> ls = LocalStack()
        >>> ls.push(42)
        >>> ls.top
        42
        >>> ls.push(23)
        >>> ls.top
        23
        >>> ls.pop()
        23
        >>> ls.top
        42

    They can be force released by using a :class:`LocalManager` or with
    the :func:`release_local` function but the correct way is to pop the
    item from the stack after using.  When the stack is empty it will
    no longer be bound to the current context (and as such released).

    By calling the stack without arguments it returns a proxy that resolves to
    the topmost item on the stack.

    .. versionadded:: 0.6.1
    """

    def __init__(self):
        self._local = Local()

    def __release_local__(self):
        self._local.__release_local__()

    def _get__ident_func__(self):
        return self._local.__ident_func__
    def _set__ident_func__(self, value):
        object.__setattr__(self._local, '__ident_func__', value)
    __ident_func__ = property(_get__ident_func__, _set__ident_func__)
    del _get__ident_func__, _set__ident_func__

    def __call__(self):
        def _lookup():
            rv = self.top
            if rv is None:
                raise RuntimeError('object unbound')
            return rv
        return LocalProxy(_lookup)

    def push(self, obj):
        """Pushes a new item to the stack"""
        rv = getattr(self._local, 'stack', None)
        if rv is None:
            self._local.stack = rv = []
        rv.append(obj)
        return rv

    def pop(self):
        """Removes the topmost item from the stack, will return the
        old value or `None` if the stack was already empty.
        """
        stack = getattr(self._local, 'stack', None)
        if stack is None:
            return None
        elif len(stack) == 1:
            release_local(self._local)
            return stack[-1]
        else:
            return stack.pop()

    @property
    def top(self):
        """The topmost item on the stack.  If the stack is empty,
        `None` is returned.
        """
        try:
            return self._local.stack[-1]
        except (AttributeError, IndexError):
            return None


class LocalManager(object):
    """Local objects cannot manage themselves. For that you need a local
    manager.  You can pass a local manager multiple locals or add them later
    by appending them to `manager.locals`.  Everytime the manager cleans up
    it, will clean up all the data left in the locals for this context.

    The `ident_func` parameter can be added to override the default ident
    function for the wrapped locals.

    .. versionchanged:: 0.6.1
       Instead of a manager the :func:`release_local` function can be used
       as well.

    .. versionchanged:: 0.7
       `ident_func` was added.
    """

    def __init__(self, locals=None, ident_func=None):
        if locals is None:
            self.locals = []
        elif isinstance(locals, Local):
            self.locals = [locals]
        else:
            self.locals = list(locals)
        if ident_func is not None:
            self.ident_func = ident_func
            for local in self.locals:
                object.__setattr__(local, '__ident_func__', ident_func)
        else:
            self.ident_func = get_ident

    def get_ident(self):
        """Return the context identifier the local objects use internally for
        this context.  You cannot override this method to change the behavior
        but use it to link other context local objects (such as SQLAlchemy's
        scoped sessions) to the Werkzeug locals.

        .. versionchanged:: 0.7
           Yu can pass a different ident function to the local manager that
           will then be propagated to all the locals passed to the
           constructor.
        """
        return self.ident_func()

    def cleanup(self):
        """Manually clean up the data in the locals for this context.  Call
        this at the end of the request or use `make_middleware()`.
        """
        for local in self.locals:
            release_local(local)

    def make_middleware(self, app):
        """Wrap a WSGI application so that cleaning up happens after
        request end.
        """
        def application(environ, start_response):
            return ClosingIterator(app(environ, start_response), self.cleanup)
        return application

    def middleware(self, func):
        """Like `make_middleware` but for decorating functions.

        Example usage::

            @manager.middleware
            def application(environ, start_response):
                ...

        The difference to `make_middleware` is that the function passed
        will have all the arguments copied from the inner application
        (name, docstring, module).
        """
        return _patch_wrapper(func, self.make_middleware(func))

    def __repr__(self):
        return '<%s storages: %d>' % (
            self.__class__.__name__,
            len(self.locals)
        )


class LocalProxy(object):
    """Acts as a proxy for a werkzeug local.  Forwards all operations to
    a proxied object.  The only operations not supported for forwarding
    are right handed operands and any kind of assignment.

    Example usage::

        from werkzeug.local import Local
        l = Local()

        # these are proxies
        request = l('request')
        user = l('user')


        from werkzeug.local import LocalStack
        _response_local = LocalStack()

        # this is a proxy
        response = _response_local()

    Whenever something is bound to l.user / l.request the proxy objects
    will forward all operations.  If no object is bound a :exc:`RuntimeError`
    will be raised.

    To create proxies to :class:`Local` or :class:`LocalStack` objects,
    call the object as shown above.  If you want to have a proxy to an
    object looked up by a function, you can (as of Werkzeug 0.6.1) pass
    a function to the :class:`LocalProxy` constructor::

        session = LocalProxy(lambda: get_current_request().session)

    .. versionchanged:: 0.6.1
       The class can be instanciated with a callable as well now.
    """
    __slots__ = ('__local', '__dict__', '__name__')

    def __init__(self, local, name=None):
        object.__setattr__(self, '_LocalProxy__local', local)
        object.__setattr__(self, '__name__', name)

    def _get_current_object(self):
        """Return the current object.  This is useful if you want the real
        object behind the proxy at a time for performance reasons or because
        you want to pass the object into a different context.
        """
        if not hasattr(self.__local, '__release_local__'):
            return self.__local()
        try:
            return getattr(self.__local, self.__name__)
        except AttributeError:
            raise RuntimeError('no object bound to %s' % self.__name__)

    @property
    def __dict__(self):
        try:
            return self._get_current_object().__dict__
        except RuntimeError:
            raise AttributeError('__dict__')

    def __repr__(self):
        try:
            obj = self._get_current_object()
        except RuntimeError:
            return '<%s unbound>' % self.__class__.__name__
        return repr(obj)

    def __nonzero__(self):
        try:
            return bool(self._get_current_object())
        except RuntimeError:
            return False

    def __unicode__(self):
        try:
            return unicode(self._get_current_object())
        except RuntimeError:
            return repr(self)

    def __dir__(self):
        try:
            return dir(self._get_current_object())
        except RuntimeError:
            return []

    def __getattr__(self, name):
        if name == '__members__':
            return dir(self._get_current_object())
        return getattr(self._get_current_object(), name)

    def __setitem__(self, key, value):
        self._get_current_object()[key] = value

    def __delitem__(self, key):
        del self._get_current_object()[key]

    def __setslice__(self, i, j, seq):
        self._get_current_object()[i:j] = seq

    def __delslice__(self, i, j):
        del self._get_current_object()[i:j]

    __setattr__ = lambda x, n, v: setattr(x._get_current_object(), n, v)
    __delattr__ = lambda x, n: delattr(x._get_current_object(), n)
    __str__ = lambda x: str(x._get_current_object())
    __lt__ = lambda x, o: x._get_current_object() < o
    __le__ = lambda x, o: x._get_current_object() <= o
    __eq__ = lambda x, o: x._get_current_object() == o
    __ne__ = lambda x, o: x._get_current_object() != o
    __gt__ = lambda x, o: x._get_current_object() > o
    __ge__ = lambda x, o: x._get_current_object() >= o
    __cmp__ = lambda x, o: cmp(x._get_current_object(), o)
    __hash__ = lambda x: hash(x._get_current_object())
    __call__ = lambda x, *a, **kw: x._get_current_object()(*a, **kw)
    __len__ = lambda x: len(x._get_current_object())
    __getitem__ = lambda x, i: x._get_current_object()[i]
    __iter__ = lambda x: iter(x._get_current_object())
    __contains__ = lambda x, i: i in x._get_current_object()
    __getslice__ = lambda x, i, j: x._get_current_object()[i:j]
    __add__ = lambda x, o: x._get_current_object() + o
    __sub__ = lambda x, o: x._get_current_object() - o
    __mul__ = lambda x, o: x._get_current_object() * o
    __floordiv__ = lambda x, o: x._get_current_object() // o
    __mod__ = lambda x, o: x._get_current_object() % o
    __divmod__ = lambda x, o: x._get_current_object().__divmod__(o)
    __pow__ = lambda x, o: x._get_current_object() ** o
    __lshift__ = lambda x, o: x._get_current_object() << o
    __rshift__ = lambda x, o: x._get_current_object() >> o
    __and__ = lambda x, o: x._get_current_object() & o
    __xor__ = lambda x, o: x._get_current_object() ^ o
    __or__ = lambda x, o: x._get_current_object() | o
    __div__ = lambda x, o: x._get_current_object().__div__(o)
    __truediv__ = lambda x, o: x._get_current_object().__truediv__(o)
    __neg__ = lambda x: -(x._get_current_object())
    __pos__ = lambda x: +(x._get_current_object())
    __abs__ = lambda x: abs(x._get_current_object())
    __invert__ = lambda x: ~(x._get_current_object())
    __complex__ = lambda x: complex(x._get_current_object())
    __int__ = lambda x: int(x._get_current_object())
    __long__ = lambda x: long(x._get_current_object())
    __float__ = lambda x: float(x._get_current_object())
    __oct__ = lambda x: oct(x._get_current_object())
    __hex__ = lambda x: hex(x._get_current_object())
    __index__ = lambda x: x._get_current_object().__index__()
    __coerce__ = lambda x, o: x.__coerce__(x, o)
    __enter__ = lambda x: x.__enter__()
    __exit__ = lambda x, *a, **kw: x.__exit__(*a, **kw)





          

      

      

    


    
        © Copyright 2011, Matthew Frazier.
      Created using Sphinx 1.3.1.
    

  

_modules/flask/signals.html


    
      Navigation


      
        		
          index


        		Flask-Login 0.3.1 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for flask.signals

# -*- coding: utf-8 -*-
"""
    flask.signals
    ~~~~~~~~~~~~~

 Implements signals based on blinker if available, otherwise
 falls silently back to a noop

 :copyright: (c) 2011 by Armin Ronacher.
 :license: BSD, see LICENSE for more details.
"""
signals_available = False
try:
 from blinker import Namespace
 signals_available = True
except ImportError:
 class Namespace(object):
 def signal(self, name, doc=None):
 return _FakeSignal(name, doc)

 class _FakeSignal(object):
 """If blinker is unavailable, create a fake class with the same
 interface that allows sending of signals but will fail with an
 error on anything else. Instead of doing anything on send, it
 will just ignore the arguments and do nothing instead.
 """

 def __init__(self, name, doc=None):
 self.name = name
 self.__doc__ = doc
 def _fail(self, *args, **kwargs):
 raise RuntimeError('signalling support is unavailable '
 'because the blinker library is '
 'not installed.')
 send = lambda *a, **kw: None
 connect = disconnect = has_receivers_for = receivers_for = \
 temporarily_connected_to = connected_to = _fail
 del _fail

the namespace for code signals. If you are not flask code, do
not put signals in here. Create your own namespace instead.
_signals = Namespace()

core signals. For usage examples grep the sourcecode or consult
the API documentation in docs/api.rst as well as docs/signals.rst
template_rendered = _signals.signal('template-rendered')
request_started = _signals.signal('request-started')
request_finished = _signals.signal('request-finished')
request_tearing_down = _signals.signal('request-tearing-down')
got_request_exception = _signals.signal('got-request-exception')
appcontext_tearing_down = _signals.signal('appcontext-tearing-down')

 © Copyright 2011, Matthew Frazier.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

